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Abstract
Sparse models have demonstrated substantial success in applica-
tions for data analysis such as clustering, classification and denois-
ing. However, most of the current work is built upon the assump-
tion that data is distributed in a union of subspaces, whereas limited
work has been conducted on nonlinear datasets where data reside
in a union of manifolds rather than a union of subspaces. To under-
stand data nonlinearity using sparse models, in this paper, we pro-
pose to exploit the self-representation property of nonlinear data in
an implicit feature space using kernel methods. We propose a ker-
nelized sparse self-representation model, denoted as KSSR, and a
novel Kernelized Fast Iterative Soft-Thresholding Algorithm, de-
noted as K-FISTA, to recover the underlying nonlinear structure
among the data. We evaluate our method for clustering problems on
both synthetic and real-world datasets, and demonstrate its superior
performance compared to the other state-of-the-art methods. We
also apply our method for collaborative filtering in recommender
systems, and demonstrate its great potential for novel applications
beyond clustering.

Key words: clustering, recommendation, self representa-
tion, kernel

1 Introduction
Sparse models on high-dimensional data have drawn keen re-
search interests due to their effectiveness on subspace recov-
ery, denoising, clustering and classification [4, 11, 28, 19].
Typically, the intrinsic degrees of freedom of a given high-
dimensional dataset are much less than those allowed by the
corresponding ambient high-dimensional space. Discover-
ing the underlying structure hidden from the redundant high
dimensions is therefore critical for modeling and analyzing
high-dimensional data. A general assumption about the un-
derlying structure of high-dimensional data is that the data
points are distributed in a union of subspaces (UoS) [10, 9].
If the subspaces are known a priori and represented as a
dictionary, then the structure underlying the data can be
represented by their coefficients over the dictionary atoms.
Specifically, given a dictionary A of a UoS and a vector x
representing a data sample, the problem becomes to find a
few atoms in A that span the subspace where x resides in.
The problem can be formulated as to identify such atoms by
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solving the following optimization problem,

min
w

‖w‖0

s.t. Aw = x,
(1.1)

where the coefficient w can thus be considered as a compact
representation of x in the UoS. We can relax the `0-norm
with combinatorial nature in (1.1) into `1-norm so as to have
a convex problem.

When such a dictionary A is unknown, it is still possible
to recover the underlying subspace structure when sufficient
data samples are present [4, 17, 11]. In particular, we can
exploit the property of “self-representation” among the data,
that is, each data sample can be represented as a linear
combination of other samples from a same subspace. The
problem of identifying the self-representation relations can
be formulated as a sparse self-representation (SSR) problem
as follows,

min
W

‖W‖1

s.t. X = XW, diag(W) = 0,
(1.2)

where W should have a block-diagonal structure under
certain permutation, and each block corresponds to the data
samples from a same subspace. The above problem has
also be interpreted as to find clustering structures (i.e., block
structures in W) of subspaces and thus also referred to as
Sparse Subspace Clustering (SSC) [12].

Sparse modeling methods on high-dimensional data
have achieved superior performance on tasks such as clus-
tering and subspace recovery [4, 17, 11]. However, these
methods assume linear relations among data and thus cannot
effectively model data of nonlinearity. Fortunately, nonlin-
ear data may exhibit linearity when mapped to an implicit
higher-dimensional feature space via a kernel function [31],
and in the implicit feature space the sparse models can be
utilized to recover the linear relations among the data, and
thus the nonlinear relations in the original feature space.

In this paper, we propose a kernelized sparse self-
representation (KSSR) model that combines sparse models
and kernel methods to learn underlying nonlinear structure
of a given dataset. We also propose a Kernelized Fast Iter-
ative Soft-Thresholding algorithm, denoted as K-FISTA, to
solve the corresponding optimization problem. We demon-
strate that the proposed method works well compared to the
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other state-of-the-art methods for nonlinear data clustering
purposes. We also apply this method for collaborative filter-
ing [25] in recommender systems, and demonstrate its po-
tential for novel applications.

2 Related Work
The idea of combining sparse models and kernel methods
has been explored in previous works [22, 13, 29, 16, 30].
In Patel et al. [22], unsupervised learning such as cluster-
ing has been conducted via sparse representation in a low-
dimensional latent space. The relation between the original
data space and the learned latent space is through a projec-
tion matrix, which implies that only linear relations among
data samples are considered. In Gao et al. [13], sparse mod-
els with nonlinear kernels integrated have been applied to
supervised learning tasks such as image classification. How-
ever, an a priori dictionary is required so as to represent data
samples in an implicit feature space. Thiagarajan et al. [29]
has combined sparse models with kernel methods into a dic-
tionary learning problem. Although they can learn a dictio-
nary from the given data, the associated optimization prob-
lem is non-convex and computationally very expensive (in-
cludes matrix inversion and SVD). Nguyen et al. [30] ap-
plies sparse dictionary learning on kernelized data, and thus
the learned dictionary is non-linear. Similarly to Thiagara-
jan et al. [29], the optimization problem in non-convex and
computationally expensive.

Different from the previous work, our method is de-
signed for unsupervised learning tasks. It is able to re-
veal data relations without a priori information such as a
pre-defined dictionary. In addition, it does not involve an
unknown dictionary that has to be learned, which intro-
duces non-convexity. Furthermore, we propose an efficient
learning algorithm K-FISTA by adapting the state-of-the-
art sparse coding algorithm FISTA [3] with kernel func-
tions, which enables us to solve the kernelized sparse self-
representation problem efficiently.

3 A Kernelized Sparse Self-Representation Method
Consider a dataset X = [x1,x2, . . . ,xn], where each col-
umn xi ∈ Rd represents a data sample, and assume there
exists a kernel function Φ : x → z such that the UoS struc-
ture holds for Z = Φ(X), then we learn the linear sparse
self-representation relations among Z by solving the follow-
ing sparse representation problem,

min
W

‖W‖1

s.t. Φ(X) = Φ(X)W, diag(W) = 0,
(3.3)

and thus the nonlinear relations among X. Notice that if Φ
is known a priori, then Problem (3.3) remains the same as
Problem (1.2).

3.1 The existence of mapping Φ The feasibility of the
formulation in Problem (3.3) depends upon the existence of
the mapping Φ. We first prove that a mapping Φ that leads to
UoS structures on Z = Φ(X) does exist.

The rationale of mapping the input data into a higher-
dimensional latent feature space in kernel methods relies on
the assumption that holds generally: data points from dif-
ferent classes become linearly separable in a certain higher-
dimensional feature space. As a matter of fact, any partition
of d + 1 points in general positions is linearly separable in
Rd. Nevertheless, in the setting of Problem (3.3), we need
the data clusters in the original feature space fall into differ-
ent subspaces after mapping. In specific, if manifolds M1

and M2 are disjoint in the original feature space, their im-
ages after mapping should intersect only at the origin. The
following theorem guarantees the existence of such a map-
ping.

THEOREM 3.1. Assume M1,M2, . . . ,Mm are pairwise-
disjoint manifolds embedded in Rd, then there exists a
mapping Φ : x→ z,∀x ∈ Rd, such that Si ∩ Sj = {0}, i 6=
j, 1 ≤ i, j ≤ n, where Si is the minimal subspace satisfying
Φ(Mi) ⊆ Si.

Proof. Given that ∀i, j, i 6= j, 1 ≤ i, j ≤ m,Mi∩Mj = ∅,
we can construct a series of m functions fi(1 ≤ i ≤ m) that
satisfy

fi(x) =

{
1, ∀x ∈Mi

0, otherwise.
Define a mapping function

Φ(x) = [f1(x)xT, f2(x)xT, . . . , fm(x)xT]T ∈ Rmd,

then ∀x ∈Mi, we have

(3.4) Φ(x) = [0, . . . , 0,xT, 0, . . . , 0]T,

where xT is from index id+ 1 to (i+ 1)d in Φ(x).
Consider Si as the minimal subspace containing

Φ(Mi), 1 ≤ i ≤ m, according to Equation (3.4), we have

(3.5) supp(Si) ∩ supp(Sj) = ∅, i 6= j, 1 ≤ i, j ≤ m,

which essentially implies that Si ∩ Sj = {0}.

Note that the condition Si ∩ Sj = {0}, i 6= j, 1 ≤
i, j ≤ m, is essentially necessary for a self-representation
model as Problem (1.2) to achieve perfect decomposition
[4]. Theorem 3.1 implies that two data manifolds in the
same subspace can be separated after mapping to a higher-
dimensional latent feature space. This essentially provides
a viable approach to clustering data in the original feature
space. When data lacks UoS structures in the original
feature space, they may reside in different subspaces in a
higher-dimensional latent feature space, and hence can be
characterized by a sparse representation model in that space.
The feature mapping enables a unified framework of learning
Union of Subspaces (UoS) and Union of Manifolds (UoM).
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3.2 Kernelized fast iterative soft-thresholding algo-
rithm Identifying an explicit form of the mapping Φ is usu-
ally intractable due to the unknown high, even infinite di-
mensionality of an appropriate feature space. A wise ap-
proach to dealing with this issue is to play the “kernel
trick” [26, 6]. Specifically, if the solution of Problem (3.3)
can be calculated in a way such that only the inner products
of data in the higher-dimensional latent feature space are in-
volved, we can work on the latent feature space implicitly via
a kernel function. Thus, we propose the following Kernel-
ized Fast Iterative Soft-Thresholding Algorithm (K-FISTA)
algorithm to solve Problem 3.3 efficiently.

Since noise is inevitable in practice, we first relax the
equality constraint in Problem (3.3), and reformulate the
problem into the following form,

min
W

λ‖W‖1 +
1

2
‖Φ(X)W − Φ(X)‖2F

s.t. diag(W) = 0,
(3.6)

where λ balances the fidelity term and the sparsity of W.
Define

f(W) =
1

2
‖Φ(X)W − Φ(X)‖2F .

Under the framework of proximal-point methods [7, 5], we
solve the following sub-problem in each iteration so as to
approximate the objective function in Problem (3.6).

Wk+1 = arg min
W

{f(Wk)

+(W −Wk)T∇f(Wk)

+
L

2
‖W −Wk‖2F + λ‖W‖1},

(3.7)

where L > 0 is a stepsize. In fact, Problem (3.7) has a
closed-form solution as follows,

(3.8) Wk+1 = Tλ/L
(
Wk −

∇f(Wk)

L

)
,

where Tλ/L(·) is the soft-thresholding operator. We expand
the gradient of f(W) as

(3.9) ∇f(W) = Φ(X)T(Φ(X)W − Φ(X)).

Assume KX,X = Φ(X)TΦ(X) is the kernel function, then
Equation (3.9) can be represented as

∇f(W) = KX,XW −KX,X,

(i.e., kernel tricks) and we hence have Equation (3.8) as

(3.10) Wk+1 = Tλ/L
(
Wk −

KX,XW −KX,X

L

)
,

that is, W can be updated using KX,X in each iteration.
Thus, we can solve Problem (3.6) without knowing the
explicit form of Φ(X).

In order to achieve a good convergence rate in Prob-
lem (3.6), we adopt the idea of FISTA algorithm [3] into
a kernelized version. FISTA algorithm falls within the cat-
egory of proximal-point methods and smartly chooses an-
other sequence Yk based on information from previous
steps instead of using Wk. The resulted kernelized FISTA
(K-FISTA) algorithm for solving Problem (3.6) is presented
in Algorithm 1.

Algorithm 1 K-FISTA for KSSR

Input: Data matrix X ∈ Rd×n, λ ∈ R
Initialize: KX,X, L = 2‖KX,X‖2, Y1 = W0, t1 = 1,
k = 1
while not converge do

Wk = Tλ/L
(
Yk −

KX,XYk −KX,X

L

)
diag(Wk) = 0

tk+1 =
1 +

√
1 + 4t2k
2

Yk+1 = Wk +

(
tk − 1

tk+1

)
(Wk −Wk−1)

k = k + 1
end while
return Wk−1

From a more general perspective, KX,X may be inter-
preted as a similarity metric of X. According to Mercer’s
theorem [6], KX,X is a valid kernel as long as it is positive
and semi-definite. Practically, finding an appropriate simi-
larity metric and reformulating it as a kernel is usually more
tractable than searching for a suitable nonlinear mapping.
We will evaluate the performance K-FISTA using popular
kernels in Section 4.

3.2.1 Computational complexity The computational
complexity of K-FISTA mainly relates to two parts: 1) the
total number of iterations (i.e. the convergence rate) and 2)
the computational cost in each iteration. The convergence
rate for FISTA algorithm is O(1/k2) [3], where k is the
number of iterations. For each iteration, the computational
cost is determined by the soft-thresholding operation, and
hence is O(n2), where n is the number of samples.

The original SSR model as in Problem (1.2) has a
computational complexity O(nd), where d is the dimension
of the input data space. When d > n, that is, the input data
space is of high-dimensionality such as for images and time
series, K-FISTA is generally more efficient than SSR. In this
scenario, K-FISTA with a linear kernel is able to achieve the
same solution as that of SSR, but at a lower computational
cost.
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3.3 Kernelized sparse representation with known dic-
tionaries When a priori dictionary is enforced to model the
given data, for example, exemplar samples are given with
labels, we therefore has a supervised problem such as clas-
sification and regression. We can further extend (3.6) to a
sparse model with a known dictionary to solve this problem
using a similar efficient algorithm as Algorithm 1. Although
the focus of this work is on unsupervised learning, we would
like to show that K-FISTA can be easily extended to super-
vised tasks. Specifically, we can reformulate (3.6) as

(3.11) min
W

λ‖W‖1 +
1

2
‖Φ(D)W − Φ(X)‖2F ,

where D is an a-priori dictionary matrix.
The motivation of utilizing a nonlinear mapping Φ in

Problem (3.11) is same as that in Problem (3.6). In particular,
we represent each data point using atoms of the dictionary
D in the higher-dimensional feature space, where D and X
may exhibit linear relations.

Similarly, define g(W) = 1
2‖Φ(D)W − Φ(X)‖2F , and

it follows that

∇g(W) = Φ(D)T(Φ(D)W − Φ(X))

= KD,DW −KD,X.

We therefore can solve W iteratively using the kernel func-
tion KD,D and KD,X similarly as in Equation (3.10). The
details are presented in Algorithm 2.

Algorithm 2 K-FISTA with a known dictionary

Input: Data matrix X ∈ Rd×n, Dictionary D ∈ Rd×m,
λ ∈ R
Initialize: KD,D, KD,X, L = 2‖KD,D‖2, Y1 =
W0, t1 = 1, k = 1
while not converge do

Wk = Tλ/L
(
Yk −

KD,DYk −KD,X

L

)
tk+1 =

1 +
√

1 + 4t2k
2

Yk+1 = Wk +

(
tk − 1

tk+1

)
(Wk −Wk−1)

k = k + 1
end while
return Wk−1

4 Experimental Results
In this section, we present the experimental results of KSSR
on two different tasks: clustering and recommendation.
For clustering, we conduct experiments on both synthetic
data and real-world data to evaluate the performance of
KSSR. In particular, we focus on testing whether the
sparse coefficient matrix W reflects the structure of the

given data correctly. For recommendation, we conduct item-
based collaborative filtering using W and evaluate whether
accurate recommendations can be produced.

4.1 Clustering results on synthetic data We first eval-
uate KSSR on synthetic nonlinear datasets and compare
it with spectral clustering (SC) [20] and SSR for cluster-
ing [11]. The synthetic dataset I is generated with 400 data
samples distributed in two disconnected 2/3 circles with uni-
formly distributed errors as in Fig. 1a. Each arch is con-
sidered as a cluster. The synthetic dataset II is generated
with 600 data samples distributed in two Archimedean spi-
rals with uniformly distributed errors as in Fig. 2a. Each
spiral is considered as a cluster. The two synthetic datasets
are nonlinear.
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Figure 1: Clustering results on synthetic dataset I
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Figure 2: W of KSSR and SSR from synthetic dataset I
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Figure 3: Clustering results on synthetic dataset II

In Fig. 1 and Fig. 3, we present the clustering results of
the three methods KSSR, SC and SSR on the two synthetic
datasets, respectively, where different predicted clusters are
indicated by different colors. We use a same RBF kernel
for both KSSR and SC. In Fig. 1, when the two arches
are close to each other, SC begins to fail. SSR can hardly
differentiate the two arches. However, KSSR has a more
robust performance on this dataset and well separates the
two arches. Similar performance can be observed on the
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Figure 4: W of KSSR and SSR from synthetic dataset II

synthetic dataset II as in Fig. 3. The results demonstrate that
under the highly nonlinear setting, SC and SSR both fail to
provide a good cut of the disjoint data manifolds. However,
KSSR is able to address the nonlinearity and thereby separate
the two data manifolds apart as demonstrated in Fig. 1a and
Fig. 3a, respectively. We can also observe the clear clustering
structures from the sparse coefficients W from KSSR. As
shown in Fig. 2a and Fig. 4a, W learned from KSSR exhibits
distinct block-diagonal structures for both datasets, where
each block corresponds to the data points in one cluster. W
from SSR fails to capture the underlying data structures as
in Fig. 2b and Fig. 4b due to the lack of linearity in these
two datasets. The results demonstrate that, although highly
nonlinear in the original data space, after implicitly mapping
to a latent feature space, the data points indeed reside in
different subspaces and exhibit linear relations within each
cluster.

SSR is typically not suitable for data in a low-
dimensional space, due to the lack of UoS structures. The
above results demonstrate that our method can analyze low-
dimensional data as long as the data distribution satisfies
Theorem 3.1. In these two examples, data points from both
clusters reside in a two-dimensional space. However, the
RBF kernel can implicitly map the two clusters into different
subspaces, and therefore facilitate the clustering of nonlinear
data.

4.2 Clustering results on real data We test the KSSR
model on both low-dimensional real-world datasets and
high-dimensional real-world datasets. The datasets used and
their properties are presented in Table 1.

Table 1: Real datasets used for clustering

dataset dimension class size
iris 4 3 150
wine 13 3 178
ORL face 10304 40 400

4.2.1 Clustering on UCI iris and UCI wine We compare
KSSR and other methods on two datasets from UCI machine
learning repository: the UCI iris dataset and the UCI wine
dataset [2]. We use clustering accuracy and the normalized

mutual information (NMI) [1] to evaluate the performance of
each method. In both metrics, a higher value indicates a bet-
ter clustering performance. For these two low-dimensional
datasets, we compare KSSR to Kmeans [27], SC and SSR.

For the iris dataset, there are three types of iris plants
with a total of 150 data points, and each data point is a 4-
dimensional vector. The performance of KSSR compared
to other clustering methods is presented in Table 2, where
Kmeans and SC use the known number of clusters as their
input parameter, and SSR and KSSR use the optimal param-
eters that are determined via grid search. Table 2 shows that
KSSR has a better clustering performance under both evalu-
ation metrics.

Table 2: Clustering performance on UCI iris dataset

metric Kmeans SC SSR KSSR
accuracy (%) 89.33 89.33 82.67 90.67

NMI (%) 75.82 74.96 65.72 80.57
Bold numbers correspond to the best performance.

The wine dataset is composed of chemical features of
three different types of wines. Each data point is a 13-
dimensional vector. We present the performance of KSSR
compared to other clustering methods in Table 3 and the
results show that KSSR achieves the highest accuracy and
NMI compared to other three methods.

Table 3: Clustering performance on UCI wine dataset

metric Kmeans SC SSR KSSR
Accuracy (%) 96.07 96.07 81.46 99.44

NMI (%) 85.03 85.03 50.72 97.33
Bold numbers correspond to the best performance.

4.2.2 Clustering on face images We evaluate the perfor-
mance of KSSR on the high-dimensional ORL database of
faces [24]. This database includes face images from 40 sub-
jects with 10 images of each. Images are taken under differ-
ent facial expressions and various lighting conditions. Each
image is of the dimension 112× 92 = 10304. In this exper-
iment, we compare KSSR with Kmeans, SSR and nonnega-
tive matrix factorization (NMF) [15] as NMF is among the
most effective methods to cluster images. Similarly, Kmeans
and SC use the known number of clusters as their input pa-
rameter, and SSR and KSSR select optimal parameters via
grid search.

We present the clustering results under different num-
bers of subjects in Table 4 and Table 5, where each subject
is considered as a cluster of the images. For each number of
subjects (clusters) in Table 4 and Table 5, we repeat the ex-
periments 20 times by randomly choosing subjects from the
entire dataset, and then calculate the average performance of

Copyright © by SIAM 
Unauthorized reproduction of this article is prohibited.

14

D
ow

nl
oa

de
d 

05
/0

1/
17

 to
 1

34
.6

8.
17

3.
20

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



Table 4: Clustering performance (accuracy (%)) on ORL face

# of subjects Kmeans NMF SSR KSSR
2 94.25 83.75 97.50 96.75
3 85.17 72.33 91.33 92.67
4 75.50 65.63 87.38 95.38
5 77.60 66.10 78.90 89.00
6 78.67 63.42 80.08 90.83
7 72.21 62.50 81.29 89.86
8 73.56 63.19 78.00 89.56
9 75.50 58.78 73.50 86.28

10 74.85 58.25 77.05 87.65
Bold numbers correspond to the best performance.

Table 5: Clustering performance (NMI (%)) on ORL face

# of subjects Kmeans NMF SSR KSSR
2 85.89 58.27 92.36 91.87
3 82.46 61.01 85.91 88.33
4 82.67 59.60 86.02 92.64
5 84.37 66.09 81.55 87.84
6 85.30 65.66 82.89 90.01
7 83.36 69.08 83.97 90.64
8 86.10 71.87 84.02 91.37
9 85.80 69.23 82.43 89.29

10 85.70 70.67 84.64 90.07
Bold numbers correspond to the best performance.

different methods as shown in these two tables.
Under both metrics, KSSR has the best average perfor-

mance. In fact, it has the highest scores in all cases except
the 2-subject case. Compared to the concept factorization
in [18] using the same dataset, we achieve a substantial im-
provement on the performance from less than 80% to around
90% under both metrics. The setting in this paper is exactly
same as [18] except that the performance is the average of
20-time experiments instead of 10.

In this set of experiments, SSR has good performance
primarily due to the high-dimensionality of the data space.
Specifically, images of one subject approximately span a
low-dimensional subspace. However, nonlinear transforma-
tions, for example, expression variations, beards and glasses,
make the images deviate from the underlying subspaces, and
therefore the distribution of images of each subject has some
nonlinear components. KSSR can address the nonlinearity
and therefore outperforms SSR model in almost all cases.

4.3 Recommendation results on real data The learned
coefficient matrix W from Problem (3.3) can be considered
as a measurement of item-item “similarities”, though it is
not strictly a similarity metrics. That is, if one data point can
be used to represent another data point (from a same man-
ifold), then they share certain “similarities” represented by
W. With respect to the original data space, such “similari-

ties” can be considered as from a certain latent “similarity”
function. Under this interpretation, we can use the coeffi-
cient matrix W for item-based collaborative filtering (CF) in
recommender systems (RS). The basic idea of item-based
CF is that, for each user in the system, we find the items that
are similar to the items that have been purchased by the user,
and aggregate their similarities to generate recommendations
for the user [8]. CF has been a very effective method in rec-
ommender systems, and significant efforts on CF are dedi-
cated to generating informative item-item similarities [23].

Table 6: Real datasets used for recommendation

datasets #users #items #nnz rsize csize density
ML100K 943 1,682 100,000 106.0 59.5 6.30%
Yelp 13,574 6,896 89,608 6.6 13.0 0.10%

#nnz represents the number of purchases of users on items; rsize, csize
and density represent the average row density, the average column
density and the average matrix density, respectively.

In specific, we conduct top-n recommendation, that
is, for each user, we generate a ranked list of n items
for recommendation. The real datasets used in this set of
experiments are presented in Table 6. The ML100K dataset
corresponds to movie ratings and was obtained from the
MovieLens research project 1. The Yelp dataset is a subset of
the academic version of Yelp user-business rating and review
dataset downloaded from Yelp 2. The users who reviewed
at least 3 businesses and the corresponding businesses were
selected to construct the Yelp dataset.

We apply 5-time Leave-One-Out cross validation
(LOOCV) to evaluate the recommendation performance. In
each run, each dataset is split into a training set and a test-
ing set by randomly selecting one of the purchased items of
each user into the testing set. We follow the item-based CF
protocol as in Deshpande et al. [8] to generate the recom-
mendations. We compare the recommendation list of each
user and the item of that user in the testing set and measure
the performance using Hit Rate (HR) and the Average Re-
ciprocal Hit-Rank (ARHR) [8] defined as follows,

(4.12) HR =
#hits

#users
,

where #users is the total number of users, and #hits is the
number of users whose item in the testing set is recom-
mended (i.e., hit); and

(4.13) ARHR =
1

#users

#hits∑
i=1

1

pi
,

where if a user has a hit, p is the position of the recommended
item in the recommendation list. ARHR measures how the

1http://grouplens.org/datasets/movielens/
2http://www.yelp.com/academic dataset
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hits are ranked in the recommendation list. Higher HR and
ARHR values indicate better recommendation performance.

Table 7 presents the performance of KSSR on ML100K
and Yelp. KSSR shows smooth performance change over the
parameter space, which is a favorable property for CF.

Table 7: Recommendation performance of KSSR

ML100K Yelp
σ λ HR ARHR σ λ HR ARHR
50 0.0100 0.324 0.144 28 0.40 0.258 0.114
50 0.0010 0.336 0.156 28 0.30 0.314 0.133
50 0.0001 0.337 0.155 28 0.20 0.105 0.044
45 0.0100 0.327 0.146 24 0.30 0.278 0.119
45 0.0010 0.341 0.157 24 0.20 0.324 0.132
45 0.0001 0.340 0.155 24 0.10 0.100 0.041

σ is the parameter for RBF. Bold numbers correspond to the best performance.

Table 8 represents the performance of KSSR-based CF
compared with the state-of-the-art top-n recommendation
methods including item-based k-NN method itemkNN [8],
weighted regularized matrix factorization WRMF [14], and
a sparse linear method SLIM [21]. In this set of experiments,
we recommend n=10 items.

Table 8: Recommendation performance comparison

dataset metric itemkNN WRMF SLIM KSSR

ML100K
HR 0.287 0.327 0.343 0.341

ARHR 0.124 0.133 0.147 0.157

Yelp
HR 0.257 0.327 0.348 0.324

ARHR 0.092 0.131 0.147 0.132

Table 8 demonstrates that the performance of KSSR is
very comparable with those from the state-of-the-art top-n
recommendation methods WRMF and SLIM. In addition,
KSSR can be superior to these methods when not only the
recommendation performance is the concern, but also the
understanding of the involved items is critical, as KSSR
discovers some nonlinear structures that cannot be revealed
from the state-of-the-art top-n recommendation methods.

5 Conclusion
We propose in this paper a novel sparse model KSSR to re-
cover the underlying nonlinear structures of a dataset. By
integrating the kernel function into the sparse representa-
tion model, we first map nonlinear data into an implicit
feature space, and then utilize the self-representation prop-
erty of the data in the feature space to partition the data
into different manifolds. Our method achieves superior per-
formance on clustering problems on multiple datasets, and
shows good adaptability on both low-dimensional data and
high-dimensional data. Our method also demonstrate strong
potential for its novel application in collaborative filtering

in recommender systems. Future work include systematical
ways to find suitable kernel functions for sparse representa-
tion, more understanding on the behaviors of KSSR for CF
and its further improvement, etc. Additionally, it would be
interesting to further modify the model to adapt potential out-
liers and data corruptions.
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