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Summary

Nowadays, we have entered the era of big data. In the area of high performance computing,

large-scale simulations can generate huge amounts of data with potentially critical information.

However, these data are usually saved in intermediate files and are not instantly visible until

advanced data analytics techniques are applied after reading all simulation data from persistent

storages (eg, local disks or a parallel file system). This approach puts users in a situation where

they spend long time on waiting for running simulations while not knowing the status of the run-

ning job. In this paper, we build a new computational framework to couple scientific simulations

with multi-step machine learning processes and in-situ data visualizations. We also design a new

scalable simulation-time clustering algorithm to automatically detect fluid flow anomalies. This

computational framework is built upon different software components and provides plug-in data

analysis and visualization functions over complex scientific workflows. With this advanced frame-

work, users can monitor and get real-time notifications of special patterns or anomalies from

ongoing extreme-scale turbulent flow simulations.
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1 INTRODUCTION

A wide variety of scientific applications are driven by advancements in high performance computing (HPC). Important examples include adverse

weather forecasts,1 new aircraft design,2,3 earthquake simulation,4,5 radiation-treatment planning,6 and evacuation in the case of the release of

hazardous materials.7 Those real-world applications not only involve intensive computations but also generate massive amount of data. For example,

S3D, which is a parallel flow solver to compute direct numerical simulation (DNS) of turbulent combustion, requires extreme-scale computing power

and outputs tens of terabytes of data.8 In an S3D workflow, 30-130TB of data is generated per simulation.9 Given the extreme-scale data generated,

it is challenging to answer certain fundamental questions such as, “did any unusual phenomena happen or not during the simulation?”

In this paper, we extend our previous work10 and design a computational fluid dynamics (CFD) specific machine learning method to automatically

detect anomaly flows. In addition to targeting at automated data analysis (ie, one of the objectives of this work), we also aim to expedite the process of

online simulation-time data analysis. Analyzing the simulation-computed results often includes 1) loading massive amounts of data from distributed

storage systems; 2) reading data to active disks; and 3) loading data into the main memory for data analysis. However, expensive I/O overhead is

involved in this procedure.

To alleviate the expensive I/O overhead, scientists start to use the in-situ (or in-memory) data processing approaches in which data analysis func-

tions can directly interact with the simulation application. In order to implement this approach, different applications are required to be recompiled,

linked again, and run in the same process or address space. However, such a deep integration of different applications has the following issues:

1) different applications are designed by experts from different domains, and it can be difficult and unfeasible for them to integrate multiple large

codebases; 2) applications may have various memory needs and scaling properties, and such an integration can bring problems such as load balancing

to all the applications.
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To tackle the issues, we adopt a tuple space to connect different applications dynamically at runtime. This way, analysis or visualization spe-

cialists no longer need to know the details of simulation code and vice versa. In the tuple-space–based approach, data communication is realized

through Remote Direct Memory Access (RDMA), which can significantly reduce the I/O overhead in traditional workflows. The integrated simula-

tion and machine learning framework we build consists of four major applications: simulation application, data processing application, data analytics

(ie, machine learning) application, and data visualization application. All the applications are coupled together through the tuple space.

In the paper, we present the following contributions in details:

1. Creation of an advanced real-time workflow system that consists of simulation, real-time data analysis, and visualization components. We focus

on the domain of computational fluid dynamics and turbulence data analysis by designing an advanced computing workflow and domain-specific

machine learning techniques.

2. Design and development of an interactive software infrastructure where different types of applications can efficiently cooperate. The infras-

tructure demonstrates an efficient way to combine different applications to enable a real-time CFD-based machine learning and visualization

system.

3. Design and implementation of a novel scalable parallel non-parametric anomaly detection algorithm that works as an efficient real-time machine

learning method for CFD turbulence analyzes. The new algorithm is a variation of the k-medoids clustering method and is augmented with a

non-parametric divergence estimator and a distributed sampling scheme to achieve scalable performance.

In the rest of the paper, next section introduces the background of DataSpaces, in-situ visualization techniques, and the detection of vortex

flows. Section 3 presents the related work to couple applications in scientific workflows and anomaly detection methods. Section 4 describes the

new machine learning method of parallel non-parametric anomaly detection. Section 5 presents the design and implementation of the integrated

workflow software framework. Section 6 shows the experimental results, and Section 7 concludes the paper with future work.

2 BACKGROUND

This section introduces the tuple space software component, the data analysis and visualization software component, and the application of tur-

bulence flow analysis. These components are used to build the integrated simulation and machine learning software framework, which will be

presented in Section 5.

2.1 Tuple space and DataSpaces

Tuple space is an associative memory model that is intended for high-productivity and distributed/parallel computing. In this model, tuples are

accessed by content and type, rather than by their raw memory addresses. The strength of the model is its ability to describe data without referenc-

ing to any specific computer architecture. Unlike in-situ methods which make all applications deeply integrated with each other, tuple space makes

it possible to flexibly combine different simulation and analysis applications and to provide insights to users dynamically.

DataSpaces11 supports the tuple space model and builds a flexible interaction and coordination substrate for various applications so that they can

interact frequently at runtime. Since DataSpaces can provide such a simple, flexible, and high-level abstraction of concurrent data, we use it in this

work to combine CFD simulations with machine learning analysis and visualization automatically.

2.2 In-situ data visualization and analysis

It often takes weeks or even months to run large-scale simulations, which generate a great amount of simulation results. By connecting simulations

with big data analysis, scientists are able to steer simulations, examine predicted phenomena, verify formulated theory, and discover novel patterns

or anomalies to initiate new inquiry. To enable this type of simulation-time data analysis, in-situ (or in-memory) data analysis is often used to analyze

data while it still resides in memory. Instead of outputting simulation data to secondary storage, data analysis is performed in memory while data is

being produced.

Paraview Catalyst (also known as Paraview Coprocessing Library)12 is one of the early attempts to analyze or visualize large-scale datasets. It pro-

vides an adaptable application programming interface (API) between simulation and visualization applications. Unlike certain specialized systems

such as the hurricane prediction visualization,13 it offers a generic in-situ visualization framework. In order to instruct or steer simulations at run-

time, Paraview Catalyst only requires developers to implement three subroutines: initialize, coprocess, and finalize. The major coprocess subroutine is

responsible for converting raw simulation data to a ready-to-visualize format and performing different visualization functions in each time step.

In this work, we utilize the Paraview Catalyst library to fulfill the specific online CFD visualization in real time.

2.3 Real-world application of vortex detection in turbulence flows

Besides computation-intensive simulations, this paper also targets big data analysis to look for interesting features that can be regarded as patterns

occurring in data. Though some features and patterns are common, they may not have precise definitions. Vortex is one of such features in the CFD

domain.
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Generally speaking, a vortex can be characterized by the swirling motion of fluid around a central region. Our work focuses on the analysis and

detection of the important vortex problem in real time.

Vortex-finding methods can be divided into two categories: region based or line based.14 Region-based vortex detection is used to identify

whether continuous cells belong to a vortex, while line-based vortex detection is used to identify vortices by locating vortex core lines. In practice,

region-based methods are easier to realize and are less computationally expensive than line-based methods. In this paper, we introduce a parallel

region-based vortex detection algorithm using a non-parametric divergence estimation method (details are provided in Section 4).

3 RELATED WORK

There are several approaches to coupling multiple applications of scientific workflow in HPC systems and to providing an all-in-one interface to end

users. In this section, we compare our work with MapReduce frameworks, workflow systems, adaptive I/O, and anomaly detection methods.

MapReduce Frameworks. MapReduce frameworks (eg, Apache Hadoop15 and Spark16) have been widely used nowadays for big data processing.

They usually provide simple programming interfaces with data parallelism and fault tolerance. However, applying those frameworks to modern

HPC systems remains a challenge mainly because of the unique infrastructure features of leading-edge HPC systems (eg, Infiniband, RDMA).17 For

example, natively, Apache Spark uses Java socket interface with IPoIB (IP over Infiniband) network to enable communications between different

nodes. Compared with native verbs interface, the extra TCP/IP and IPoIB layers in the kernel space could bring noticeable overhead. RDMA-SPARK18

is targeting at this limitation of Spark, and by leveraging advanced features on high-performance networks, a significant performance improvement

has been achieved. This is also a sign that, even though the popular MapReduce frameworks can provide simpler programming interfaces, they

may not make full usage of modern HPC infrastructure. In contrast, HPC-oriented frameworks, like DataSpaces (which also supports RDMA verbs

natively), have advantages in utilizing advanced hardware features in HPC systems and supporting data intensive operations in extremely large-scale

efficiently.

Workflow Systems. Another approach to enabling large-scale data processing using HPC resources is using workflow systems, which can define,

compose, manage, and execute multiple applications on distributed computing resources to achieve an overall goal. Kepler is a widely used work-

flow framework where scientists, analysts, and software developers may share data and models over the Internet (via Web Services).19 Kepler

provides a graphical user interface (GUI) where users can simply select and connect different data sources and analytical components to create a

scientific workflow. Such workflows involve applications which can be data-intensive, computation-intensive, or visualization-intensive. Web ser-

vice extensions are required by workflow systems to access remote resources and services seamlessly. Pegasus20,21 is another popular workflow

framework that can map complex scientific workflows to distributed resources. Pegasus is built on HTCondor,22 a production high-throughput dis-

tributed batch computing system. Users can describe the workflow using several popular languages (python, java, perl), then the generated DAX

(Directed Acyclic Graph in XML) file can be passed into a “planner”, which maps the abstract representation (DAX) of workflow to HPC resources.

Nevertheless, these traditional workflow frameworks have to use files and slow disk I/Os to exchange data between applications. They also require

querying file existence or flags to detect whether new data is available or not.

Adaptive I/O. ADIOS (Adaptive I/O System)23 supports a range of data transfer methods and supplies scalable, portable, and efficient compo-

nentization of the I/O layer on both Linux clusters and supercomputers. ADIOS also provides I/O componentization for different data transport

methods, which makes switching I/O methods in different infrastructures simpler. In fact, ADIOS also offers DataSpaces as a data transport method

(implemented with a wrapper), since DataSpaces can provide low-overhead, high-throughput data extraction from running simulations. Our frame-

work uses DataSpaces to integrate CFD simulations with machine learning applications. Unlike ADIOS and DataSpaces, our system is a high-level

application-specific framework, which focuses on simulation-time CFD anomaly detections.

Anomaly Detection Methods. Anomaly detection (or outliers detection) is the process to find data objects with behaviors that are different

from expectations.24 It has been widely used in areas such as intrusion detection, fraud detection, medical/public health detection, and image

processing.25 There are mainly three types of methods that can be used in anomaly detection: statistical methods,26,27 which assume normal data

can fit into a statistic model, while the outliers cannot; proximity-based methods,28,29 which regard an object as an anomaly based on proximity

(or distance measure); and clustering-based methods,30,31 which assume normal data reside in larger groups, while anomalies can be found in smaller

clusters or do not belong to any clusters. As for the real-time CFD turbulence data we are targeting at, training a model using statistical approach

can be unrealistic. There is a lack of domain-specific training data and the training process cannot keep pace with the real-time data, which is gen-

erated relatively fast by simulations. In our approach, a customized and optimized clustering-based method is designed and developed, and more

details will be shown in Sections 4 and 5.3.

4 AN UNSUPERVISED MACHINE LEARNING ALGORITHM TO ANALYZE CFD FLOWS

Unlike conventional data science applications in which each data point has a fixed number of finite-dimensional features, dynamic fluid flows can

be analyzed in a different way using continuous probability distributions, in which case a group of data points (ie, a flow region) are processed as

independent and identically distributed (i.i.d.) samples. Our basic idea is to use an unsupervised machine learning method to classify flow regions

into different categories that exhibit different properties.
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We choose to use the k-medoids clustering method32 to cluster all regions. The less computation-intensive k-means method cannot be simply

applied here because it is not suitable to get the means (or “averages”) of distributions (flow regions). Instead, we can measure the difference of those

distributions, then k-medoids method is used here. The k-medoids clustering method has the advantages of being robust to noise and outliers and

uses the general Manhattan Norm33 to compute the distance between objects instead of the Euclidean distance only. While Euclidean distance mea-

sures the shortest distance in the plane, the Manhattan distance measures the shortest path if you are only allowed to move along one dimension.

Mahattan distance can be especially useful when different dimensions are not directly comparable.

Our domain-specific k-medoids clustering algorithm is shown in Algorithm 1. The algorithm takes all regions as input data objects and minimizes

the sum of in-cluster dissimilarities. The k-medoids method is executed for num_runs times, each with a set of different initial random medoids.

The corresponding clustering result with the smallest in-cluster dissimilarities will be returned as the final output.

The key point to make the k-medoids method work is the method to compare the dissimilarity between two flow regions. We use the metric of

divergence and the non-parametric divergence estimation34,35 to compare different regions, where the density of each data point can be estimated

using the distance to its k-nearest neighbors, and divergence of two regions can be calculated based on comparison of densities over the whole

region.

To cope with the fluid flow data analysis problem, we use three dimensions to represent each point in a fluid region: vx and vy for the point's velocity

in the x and y directions, respectively, and dc for the distance from the point itself to the fluid region's center. We choose to add the dc dimension

because the velocity in a vortex most often changes with the distance from the center, which has also been reported in the work of Póczos et al.36

Since the third dimension (dc) is not directly comparable with the other two, it is an obvious choice to utilize the Manhattan distance to give more

robust results.

Next, to measure the divergence between two groups of data points, we use the commonly used L2 divergence, which is explained in

Definition 1.

Definition 1. Let p and q be densities over Rd, then the L2 divergence is

L(p||q) = ∫ (p(x) − q(x))2dx)1∕2
.

Moreover, to avoid recomputing the divergence between the same pair of regions, Algorithm 1 initially constructs a dissimilarities matrix and

feeds it to the k-medoids method.

An overall illustration of our algorithm is shown in Figure 1, with four stages present as follows:

1. Region division. Fluid flows are divided into flow regions based on the geometric information.

2. Divergence calculation. Divergences between flow regions are measured using the L2 divergence metric, and a distance matrix is generated.

3. K-medoids grouping. Regions are assigned into different groups using k-medoids, given the information from the distance matrix.

4. Label assigning. Based on the grouping information, a label is assigned to each group (for further visualization).

Remark 1. A naive implementation of the Algorithm 1 cannot scale well for large size datasets due to the expensive calculation of pairwise

divergence among all the regions. Hence, we design and develop an improved algorithm to solve the issue, which will be presented in Section 5.3.
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FIGURE 1 Demonstration of the proposed dynamic fluid anomaly detection algorithm

5 SOFTWARE FRAMEWORK

In a typical scientific workflow system, multiple components can coexist and each of them performs specific functionalities. In our vortex detection

problem, we use four components, ie, simulators, data processing, data analysis, and Catalyst (visualization), as shown in Figure 2. DataSpaces is used

as communication channel among all the components due to its high efficiency and portability. All components are coupled together and no disk I/O

is involved.

In the proposed framework, simulators will run the computation-intensive simulations and flush resulting data into DataSpaces at each time step.

Instead of consumed by one single application, simulation data can be simultaneously obtained by both data processing and Catalyst components.

FIGURE 2 Architecture of the software framework. All applications are connected together using DataSpaces variables



6 of 12 LI AND SONG

Data sent to data processing component is preprocessed first and then further analysis will be conducted using the intermediate data. In the same

time, simulation data also flows to catalyst, which will visualize data in a proper way and give users a view of both turbulence flow (through path 3

in Figure 2) and data analysis results (through path 9 in Figure 2).

Among all the four components, data processing and data analysis are both related to extracting and predicting information from simulation

dataset; however, they are placed in different components since they are aiming at separate procedures and run in different sales. More detailed

information of each component will be introduced in the rest part of this section.

5.1 Simulators

Our system targets at real-time and large-scale scientific simulations, where data needs to be extracted and analytics information should be given as

soon as possible. However, archived, static simulation data is used first to verify the correctness of our algorithm design and system implementation.

More specifically speaking, the archived simulation dataset we choose, which is from turbulence database,37 is well structured and there are existing

analysis tools which we can refer to. More details about this dataset are provided in Section 6.

The other type of simulation data we use is the real-time data flow from CFD software (eg, OpenFoam38). Widely used in production in both

engineering and science fields, openfoam can run in extremely large scale and generate a huge amount of data for specific workload. It provides a

large range of solvers for different problems.

IcoFoam, which is a transient solver for incompressible, laminar flow of Newtonian fluids,39 is used by us to simulate 2D lid-driven cavity flow

problem40 To connect simulators with other applications, we add an alternative I/O routine to IcoFoam so that simulation results can be transferred

into DataSpaces instead of written into persistent storage.

5.2 Data processing and data analysis

Once we get all the simulation results and send data to DataSpaces, the challenge becomes 1) how we can consume the data in a proper and efficient

way; and 2) how to produce useful information based on limited data input. Because the size of data generated in each iteration is large, keeping all

records in memory can be very expensive. It will be attractive if data can be automatically extracted and hidden information can be given in real time.

The naive unsupervised machine learning method has been discussed in Section 4, which involves four steps: region division, divergence calcu-

lation, k-medoids grouping, and label assigning, as shown in Figure 1. Algorithm itself is straightforward and what really matters is how to nicely

distribute workloads among all computing resources. To have better understanding of how computing resources are consumed in this algorithm, we

implemented sequential version first and found out that pair-wise divergence calculation uses most of CPU time.

Based on this observation, we divide the knowledge discovery functionality into two applications: 1) data processing component which uses mas-

sive nodes to calculate divergences between region pairs; and 2) data analysis component, which uses smaller amount of resources to analyze the

reduced data (divergence matrix).

The two applications work as follows: 1) simulation data is first divided into regions and distributed to different data processing processes;

2) data processing processes then reads the assigned regions and computes the divergences between all pairs of regions; 3) after step 2 is complete,

data analysis processes will read the computed divergences and perform k-medoids clustering to search for the k global medoids, where k is the

number of clusters specified by users; and 4) data processing processes assign a cluster ID to each of its allocated regions based on their distances

(ie, divergence) to the k medoids.

The rest of the section provides more details about the data processing and data analysis applications.

5.2.1 Data processing

One concern when running the divergence calculation is how we can split all the raw simulation data among massive data processing processes.

DataSpaces can provide application developers a very intuitive programming interface, which asks for logical area where the I/O operations will

be performed on. However, carelessly using this interface may produce significant performance degradation. For instance, DataSpaces generally

performs better when the operation has good spatial locality, so in the data processing application side, we divide data into lengthy strips instead of

square blocks, as shown in Figure 3. The layout of strips is also beneficial to the sampling technique, which will be introduced in Section 5.3.

Synchronization between the data processing application and the next data analysis application is supported by customized DataSpaces locks

(details will be discussed in Section 5.5).

5.2.2 Data analysis

Once all the divergences are calculated by the data processing application, the data analysis application will take over and apply k-medoids clustering

methods to construct the distance matrix, thus determining new medoids in each group of regions. The new medoids information will immediately

be sent back to the data processing processes so that they can assign a cluster ID to every region.
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FIGURE 3 Data layout of simulation data in DataSpaces. Simulators store simulation data in DataSpaces using 2D logical geometrical locations,
while data processing processes read simulation data in stripes

5.3 Distributed sampling

Applying k-mediods method using divergence matrix seems straightforward in Section 5.2.2, but maintaining such divergence information becomes

very challenging for large dataset. For a data input containing n square regions, there will be O(n2) divergences to be calculated for all the pairs. In

this section, a distributed sampling method is proposed, which is specially optimized for DataSpaces and also greatly reduces the computation time

in divergence calculation.

The idea of sampling in k-mediods is not new. CLARA (Clustering LARge Applications)41 is an example to use sampling to reduce computation

complicity for clustering tasks. Instead of getting new medoids from original dataset, CLARA will first randomly select a smaller amount of samples,

update new medoids from samples, and use distances to these “estimated medoids” to assign the original data objects into different classes. Exper-

iments show applying such sampling can give higher efficiency and while not losing much accuracy, when compared with the original k-medoids

method.41

To apply the idea of sampling into our system, the naive approach could be: 1) simulators flush all simulation data into DataSpaces; 2) each time when

a data processing process wants to calculate the divergence for a region pair, it reads that pair to local memory from DataSpaces; and (3) algorithm in

Section 4 will be used to figure out how different those two regions are with each other.

Note that DataSpaces needs to issue one I/O (get or put) operation for each logically continuous block, and each I/O operation involves synchro-

nization among all application processes, thus reading such two randomly selected regions from DataSpaces is expensive, especially when there

needs to be a large amount of samples. Instead of using such small-granularity DataSpaces operations, a better way is combining small I/O operations

together and reading a large chunk of data at once.

In our solution, this is actually done in a 3-phase fashion, as shown in Figure 4:

i. Each simulator will select several regions as samples, concatenate them together, and insert them into DataSpaces in one “put” operation.

ii. Central DataSpaces will gather sampled regions from all the simulators.

iii. Each data processing process needs only one single “get” operation to get a full copy of the central samples. After that, it can calculate a subset

of the divergences of those samples.

FIGURE 4 Distributed sampling using DataSpaces. Each simulator will perform local sampling first and samples from all simulators will be
gathered in central DataSpaces variable. Each data processing process can get a full copy of samples from DataSpaces
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5.4 In-situ visualizations with catalyst

The goal of designing this workflow system is to provide user with a vision of both simulation flow and analysis results. As we have mentioned,

Paraview Catalyst is used as the visualization component to give real-time view of both CFD simulations and clustering analysis results. Catalyst

is a library which can be conveniently linked to simulation application. One modification we have made is, instead of directly linking catalyst with

simulation, we combine input from both simulation and data analysis (through DataSpaces) and then visualize them together. A dedicated server is

also settled so that multiple user connections can be simultaneously served.

Catalyst needs to be “instructed” with simulation so that it can give the desired visualization output for different kinds of requests. To achieve

that, application developers usually follow two steps to work with Catalyst:

i. Pre-process step, where user needs to define how he wants the simulation data to be visualized, which is done by defining visualization pipelines

in python scripts.

ii. Execution step, where Catalyst is linked with simulation application and visualization data structure is generated based on the rules defined in

step i.

The advantage of separate configurable python file is that, if a user wants to present data in a different view or layer, simply modifying the python

file is sufficient, instead of recompiling applications. Another advanced feature of the Catalyst tool is a user does not even need to “write” the python

file from scratch if he uses the “Catalyst Script Generator plugin”. To achieve this, the following steps are required: 1) open a piece of sample data

(usually a data cutout of one time step) in Paraview GUI; 2) add visualization pipelines, which includes dragging and dropping different visualization

components, and modifying default configurations in the GUI; and 3) use the plugin to generate scripts.

The only problem left is how to get such sample data. Actually, Paraview provides template scripts which can transform structured data into VTK

files and those produced files can be used as sample input.

5.5 Inter-application synchronizations using DataSpaces

DataSpaces can help connect various applications, but problems may arise when synchronization is not handled carefully. Using default configura-

tions, data (to be transfered) is saved in the main memory of staging server, which turns out to have limited capacity. It is not an issue most of the

time because DataSpaces ensures that the next iteration of simulation would not run until all the consumers have successfully read the data from

the staging server. This policy is enforced by using very strict collective locks, which are not what we actually want, since they will stop simulations

from continuous running and slow down the throughput of the whole workflow.

To address this problem, we use separate locks in each iteration so that the simulation will never get blocked and data will be immediately inserted

into DataSpaces once it finishes one step of the simulation.

In this way, simulation will run at full speed and users will also get corresponding analysis and visualization results just in time.

6 EXPERIMENTAL RESULTS

We evaluate our scientific workflow framework using the Karst computer system located at the Indiana University.42 As a high-throughput computer

system, Karst has 228 general access compute nodes (IBM NeXScale nx360 M4), and each node is equipped with two Intel Xeon E5-2650 v2 8-core

processes and 32GB memory. All compute nodes are installed with Red Hat Enterprise Linux 6 with 10-gigabyte Ethernet interconnection.

The three experiments are designed as follows. Firstly, we show how our framework can provide real-time flow visualization and clustering-based

anomaly detections. Then, communication overhead and efficiency of our framework are evaluated and analyzed in experiment 2 with a real

simulation generator. Finally, we run our framework using various configurations and demonstrate the speedup and scalability of the framework.

6.1 Turbulence analysis with JHTDB dataset

We run the first experiment with the forced isotropic dataset (coarse)43 from Johns Hopkins Turbulence Databases (JHTDB). In this archive/static

database, all the simulation data is generated from a 1024 × 1024 grid and is well formatted using the VTK/HDF5 format.

The data we actually use is a portion of the original isotropic data, which has 100 frames for 200 × 200 fluid data elements. A crawling script

first fetches these frames from JHTDB datacut service and saves all of them into filesystem in advance. Then at each step, a file reader will take one

frame (namely, a separate VTK/HDF5 file) as input, extract information, and feed the transformed data to our data analytics applications. The data

processing algorithm will partition data in to small regions and each of those regions will be assigned with a label once divergences of all region pairs

are calculated.

Figure 5 shows the demo of the analysis/visualization results of the JHTDB isotropic dataset. The right side is directly rendered from the VTK

file of the current step, in which warmer color means higher pressure and the glyphs represent velocities in different directions; in the left, the cor-

responding colored output is given by our clustering algorithm. Small colored blocks are fix-sized regions, and each region contains certain number

of data points (in Figure 5, region size of 20×20 is used). Note that, in this experiment, we do not use the distributed sampling because dataset itself

is relatively small and the main purpose of this experiment is to demonstrate how our system can give in-time and meaningful visualization from

continuous data input. Distributed sampling is designed to address scalability challenges and will be discussed in the next two experiments.
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FIGURE 5 Demo on the JHTDB isotropic dataset

Three types of flow patterns are recognized from Figure 5:

1) steady flow, where all elements in this region have similar moving directions and velocity; 2) unsteady flow, where there are swirling motions

of fluid; and 3) random flow, where fluid shows unexpected patterns over time.

Those three patterns illustrate typical behaviors in fluid flows, and when used along with the directly visualized simulation data (the right part in

Figure 5), scientists can get clearer insights into what is happening during simulations.

6.2 Execution time breakdown

The second experiment is designed to examine the communication overhead and efficiency of our framework, provided that different applications

usually execute quite various tasks and there are also data dependencies between those tasks.

We begin this experiment with the configuration, as shown in Table 1. There are in total 16 simulation processes and each of them is responsible

to solve the dynamic fluid problem in a grid with a size of 1024×1024. As for data processing components, we use 32 processes to get stripped data

and calculate all the divergences. Then, one data analysis process and one Catalyst process are used respectively, since the workloads in those two

components are relatively smaller once all divergences are obtained from data processing components.

Average data transfer and computation time of all the four applications (simulator, (data) processing, (data) analysis, and Catalyst) for 30 time steps

is shown in Figure 6. Several conclusions can be easily drawn from the observation:

1. Communication time is much less than computation time in all the four components.

2. Among all applications, simulator has the longest computation time, which suggests that the data source would not be delayed by the other

applications, and this will make sure the overall workflow can proceed in rather fast speed.

3. Even though other applications do run slower, they have comparable computation time with simulator components. This is a sign that the

computation resources in those components are busily occupied most of the time.

6.3 Scalability evaluation

For the workflow users, they usually care more about the overall latency of the whole workflow system. This latency is the time interval since the data

source application starts the first step until the last data consumer application finishes its last step. This metric can be a reference to the walltime

of the job for the whole workflow. Since highly parallel HPC resources are used, it is interesting to examine how this latency will change when more

nodes are used.

Here, we use a same dataset as that in experiment 2, and the 4096×4096 grid can generate 1GB of simulation data in each step. Table 3 shows

behaviors of our system under different configurations. The metrics we use are explained in Table 2, where the entry we are most interested in

latency_all, which describes the end-to-end time spent between the beginning of simulation and the termination of all data consumer applications.

TABLE 1 Configuration for the time-breakdown experiment

Simulation processes 16

Fluid grid size/process 1024×1024

Data processing processes 32

Data analysis processes 1

Catalyst processes 1

Region size 16×16

Number of clusters (k) 3

Max number of versions buffered 30
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FIGURE 6 An execution time breakdown

TABLE 2 Selected metrics for scalability evaluation

Metric Name Description

np_sim Number of processes for simulation application

np_dp Number of processes for data processing application

time_divs_cal Average time spent on divergence calculation in each time step

time_cluster_assign Average time spent on assigning cluster ids using medoids information

time_catalyst Average time used by catalyst application in each timestep

latency_produce Latency produced by the producers: simulation application

latency_consume Latency produced by the consumers: data processing, analysis, and visualization

latency_all Overall end-to-end latency

TABLE 3 Configurations and results of scalability evaluation

np_sim np_dp time_divs_cal time_cluster_assign time_catalyst latency_produce latency_consume latency_all

16 32 59.3 s 88.9 s 93.75 s 340.5 s 453.0 s 793.5 s

64 128 14.1 s 20.1 s 91.6 s 53.5 s 140.2 s 193.7 s

problem size is 4096×4096

The first configuration uses 16 simulation processes and 32 data process processes, which is actually the same configuration as in experiment 2.

In this case, the overall latency is 793.5 s. We four time the number of processes for both simulator application and data processing application in the

second configuration and it gives a much lower latency of 193.7s. A sample size of 512 is used in both configurations.

To dig deeper into this significant drop in latency, we can take a closer look at the latency_produce and latency_consume items in Table 3, where we can

find that both of those two latencies are greatly reduced. This tells us that the overall shorter end-to-end time is contributed by applications in both

data source and data consumer sides. The time_divs_cal, time_cluster_assign, and time_catalyst entries are the average timing of specific applications.

From those three metrics, we can infer the reasons for differences in end-to-end time between two configurations: 1) divergence calculation time

(time_divs_cal) is reduced since more data processing processes are working on the same simulation problem size; and 2) time_cluster_assign is also

decreased because label-assigning is also actually done by the data processing application.

The catalyst simulation time remains the same because we do not change either the number of catalyst processes or the data input of Catalyst

(simulation size and number of regions to be labeled).

7 CONCLUSION AND FUTURE WORK

The world of scientific computing is in the process of being transformed by large-scale efforts to combine HPC simulations with advanced big data

analytics techniques. However, it is rarely studied how to apply machine learning to extreme scale scientific simulations for obtaining new knowledge

rapidly. Also, current methods for achieving efficient combination of HPC and big data analysis are still unsettled.

With the aim of providing an efficient integrated simulation-time machine learning framework, this work creates and builds a workflow software

framework to combine simulation application with various data analysis applications. The framework consists of a parallel simulation application, a

data processing application, a machine learning application, and an in-situ visualization application, which are coupled together through a globally

shared tuple space. Each of the applications is running on a separate subset of compute nodes and interacts with each other. In the framework design,
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we use DataSpaces as the shared tuple space to enable communication between applications, and we also avoid the expensive disk I/O overhead by

using RDMA techniques.

Along with the enabling integrative software framework, we also design and develop a parallel non-parametric clustering method to perform

online machine learning for CFD simulations, which is based upon a new density estimation method optimized for flow regions. The parallel

non-parametric clustering method has also been extended with distributed sampling so that the data analysis time can be significantly reduced. We

apply the workflow framework to the CFD application of vortex/anomaly detection in turbulence flows. With the new non-parametric divergence

estimation method, we are able to cluster fluid regions into various categories. As a result, output from the online machine learning and related fluid

properties such as velocity and pressure can be displayed side-by-side by an in-situ visualization tool in real time. By using this new framework, sci-

entists can get real-time notifications of special patterns or anomalies that are happening in turbulence flows. Also, the experimental results show

that the integrated framework is efficient and can scale well when more computing resources are used.

Our future work along this line will be studying new parallel machine learning algorithms and statistical methods that target extreme-scale

simulation data analysis and designing dynamic methods to schedule computing resources to different workflow stages in a balanced manner.
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