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Abstract—Disk data density improvement will eventually be limited by the super-paramagnetic effect for perpendicular recording.

While various approaches to this problem have been proposed, Shingled Magnetic Recording (SMR) holds great promise to mitigate

the problem of density scaling cost-effectively by overlapping data tracks. However, the inherent properties of SMR limit Shingled Write

Disk (SWD) applicability since writing data to one track destroys the data previously-stored on the overlapping tracks. As a result,

various data layout management designs have been proposed. In this paper, we present a hybrid wave-like shingled recording (HWSR)

disk system, which can improve both the performance and the capacity of a shingled write disk. We propose a novel segment-based

data layout management and a new wave-like shingled recording that overlaps adjacent tracks from two opposite radial directions. This

new scheme can not only efficiently reduce the write amplification, but also double the areal density of conventional circular log-based

shingled recording. A new replacement policy based on least write amplification is also devised to manage the hybrid system to

effectively eliminate the performance degradation. Our measurements on HWSR implemented in Linux kernel 2.6.35.6 show that it

provides superb performance. For example, HWSR reduces the average I/O response time by an order of magnitude compared to

S-block for Financial1 trace, and provides up to 3.7 speedup over standard hard disks without using shingled magnetic recording

technology.

Index Terms—Shingled recording, SSD, hybrid system, replacement policy, data layout

Ç

1 INTRODUCTION

CURRENTLY, the areal density of magnetic disks is reach-
ing its length-scale limitation. The capacity of a mag-

netic disk has increased 30-50 percent per year for almost
50 years. Disk areal density is quickly approaching to 1Tbit/
in2, a limit caused by superparamagnetic effect [6]. The mag-
netic direction of a sufficiently small particle can be ran-
domly flipped under the influence of ambient thermal
energy. Areal density scaling in magnetic hard drives is in
jeopardy as magnetic particles become unstable when they
are sufficiently small. New recording technologies have been
proposed to scale up the areal densities, such as Bit-Pat-
terned Media Recording (BPMR) [19], Microwave Assisted
Magnetic Recording (MAMR) [9], and Heat Assisted Mag-
netic Recording (HAMR) [5]. Of the new technology being
explored, Shingled Magnetic Recording (SMR) exposed as
the most promising one to achieve high areal density
increase and little changes to the manufacturing process. By
partially overlapping tracks to reduce track width, the areal

density can be improved to 2–3Tb/inch2 [4]. Combined with
2-D readback and new signal processing techniques [7], [11],

the areal density can be further enhanced 10Tb/inch2 [4].

The inherent weakness of shingled recording is the poor
random write performance, because writing to a given data
track requires rewriting its subsequent tracks. The amount
of data actually written is extremely larger than the write
request size. The inferior performance for small random
writes, also called write amplification, is one of major fac-
tors restricting its widespread deployment in real systems.
Therefor, the key challenge of extending the application of
shingled writing and integrating it into magnetic disk sys-
tems is to lower the write amplification. Cassuto et al. [14]
constructed an indirection system for shingled recording
disks and introduced a data layout management, called S-
block architecture that organized data into circular log.
However, the circular log-based data layout has a high data
immigration overhead during garbage collection (GC).
Moreover, it has to maintain a large amount of metadata for
tracking the dynamic mapping between a logical address
and its physical location.

In this paper, we propose a hybrid wave-like shingled
recording disk system (HWSR) to improve both the perfor-
mance and the capacity of a shingled recording disk [1].
HWSR contains three different storage media: memory,
SSD, and hard disk. The memory has a very small capacity,
such as 64 MB, in our design to reduce the overall cost. It is
used to buffer hot writes. The SSD is used as a read cache to
improve the read performance, because SSDs have higher
sequential and random read performance than HDDs,
particularly random reads.

HWSR consists of three key components: (1) a new data
layout based on segmentation for shingled recording disks
to reduce random write amplification; (2) a new shingled
track layout named wave-like shingled recording (WSR) to
further improve its capacity; (3) a new replacement policy
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based on least write amplification that effectively reduces
the miss rate and the amount of rewritten data.

The key contributions of this paper are as follows.

� We have proposed a novel segment-based data lay-
out management which limits random write amplifi-
cation to a single segment by breaking a region into
segments. A segment is much smaller than a region.

� We have devised a wave-like shingled recording that
reduces half of wasted space and effectively
improves disk utilization rate.

� We have also designed a new replacement policy
based on least write amplification that greatly
reduces the miss rate and data immigration.

� We have implemented HWSR in the Linux kernel
2.6.35.6 as a stand-alone kernel module and
comprehensively evaluated its performance. The
experimental results showed that HWSR provided
superior performance.

The rest of this paper is organized as follows. Section 2
gives an overview of HWSR system and presents our
data layout, address mapping structure, and replacement
policy. Section 3 discusses three key issues: write ampli-
fication, disk utilization, and metadata amount. We
discuss our prototype implementation in Section 4. Per-
formance evaluation is presented in Section 5 followed
by related work in Section 6. Section 7 concludes this
paper.

2 THE DESIGN OF HWSR

In this section, we describe our system model and give an
overview of HWSR.

2.1 Design Overview

Fig. 1 shows the HWSR system architecture consisting of a
SSD cache, a MEM buffer and a shingled-recording disk.
While the MEM buffer mainly stores write requests, the
SSD cache mainly stores read requests. When a write
request arrives, the MEM buffer stores incoming data and
updates the address mapping table. When MEM buffer is
full, MEM buffer evicts out some cold data to make space
for new data. All evicted data is written to the disk. When a
read request arrives, MEM buffer looks up the address
mapping table. The read request accesses SSD if MEM

buffer does not hold the target data. The shingled disk
serves all misses of the SSD cache.

In the practical application, in order to avoid data loss,
we can use NVRAM as the write buffer. NVRAM retains
the non-volatile characteristics of secondary storage such as
Flash memory or disks and has comparable performance to
DRAM. In Section 5.3, we see that HWSR can obtain enor-
mous performance improvement with a small size of MEM
buffer (64 MB) and SSD cache. Therefore, by using small
NVRAM as write buffer, HWSR adds little hardware cost.
Moreover, we can just only use NVRAM as both the write
buffer and read cache so that HWSR can be utilized as a
drop-in replacement for standard disks.

And there is another method to protect data from loss in
practice. In HWSR, we can use a logic control unit to moni-
tor system power and in the case of an unexpected power
failure, transfer the cache data from the DRAM to the SSD.
A small battery or super capacitor is used to supply power
until the transfer is complete. When the power is restored,
the logic control unit restores the cache data from SSD to
the DRAM. SSD is used as a read cache and all the data in
SSD is clean. So, the logic control unit can store the cache
data at any fixed location of SSD.

2.2 Data Layout

2.2.1 Segment-Based Data Layout

To deal with the expense of write amplification, SMR breaks
the disk surface into smaller pieces called regions, consist-
ing of a set of consecutive tracks. Regions are then separated
by a gap called the Region Gap. The width of the Region
Gap is just enough to ensure that a write to the last track of
a region does not interfere with a write to the first track in
the next region. Thus, breaking the disk into regions effec-
tively reduces the write amplification to the size of the
region in the worst case. Despite the improvement, this
solution is far from ideal, even when region sizes are a
modest 64 MB, let alone multi-GB sized regions.

In our scheme, we propose a segment-based data layout
management. As shown in Fig. 2, the disk surface is first
broken into shingled regions. Then a shingled region is fur-
ther divided into segments of the same size in the radial

Fig. 1. HWSR system architecture.

Fig. 2. Data layout based on segmentation.
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direction. In each segment, the sectors in the same track con-
stitute a data block. Fig. 2 shows an example of three
regions, with eight segments in each region. Region R0 is
divided into eight segments, each segment has four blocks
(B0, B1, B2, B3), and each blocks is composed of eight sec-
tors. Within a region, the logical addresses of two adjacent
segment are consecutive. Within a segment, the logical
addresses of two blocks on the adjacent track are consecu-
tive. When writing sequential data blocks to a segment, the
data blocks are laid out in the radical direction. Thus, if data
in segment S1 is updated, its neighbor segments S2 and S0
are not affected.

Fig. 3 shows the comparison of write amplification
between traditional data layout and our proposed segment-
based data layout. In this example, we assume a region con-
sists of four tracks. When three sequential data blocks
marked in green are written to a traditional shingled disk,
nine data blocks in the adjacent tracks of the same region
have to be rewritten, i.e., we need to copy the nine data
blocks to some spare space and then rewrite them back.
This example shows the inherent properties of SMR: writing
data to one track destroys the data previously-stored on the
overlapping tracks. In segment-based SWD, the three
sequential data blocks are laid out in the radial direction in
a segment and only one data block are overwritten. In real-
ity, a region may consist of more than one hundred tracks.
The larger the number is, the higher the write amplification
of the traditional shingled disk is. However, in segment-
based SWD, a write or update operation overwrites the
whole segment in the worst case. The segment size is much
smaller than a region. Generally, the write amplification of
data layout based on segmentation is 1/n of traditional data
layouts, where n is the total number of segments in a region.

2.2.2 Wave-Like Shingled Recording Disk

Traditional HDDs store data in concentric tracks that are
normally separated by a small gap to prevent inter-track
cross-talk as shown in Fig. 4a. SMR is introduced to increase
the areal density of hard disk. In a traditional shingled disk
, the tracks are laid out with partial overlap in the radial
direction as shown in Fig. 4b. We assume that the number
of tracks that are overlapped by a shingled write is k, where
k is usually 2-3 in reality. Theoretically, if there were
no wasted space (guard band), the maximum capacity of a

shingled disk would be k times of traditional disk as shown
in Fig. 4a. Via overlapping tracks, the average track width is
significantly reduced.

Data tracks are organized into bands called regions,
which are separated by a collection of p following tracks
called guard band, where p is at least k. Guard bands are to
prevent the interference between regions and do not store
any valid data. Thus guard bands create significant spatial
overhead. For traditional shingled recording, each region
has its own guard band, which leads to considerable over-
head. The tracks in wave-like shingled recording, as shown
in Fig. 4c, are laid out with partial overlap in two opposite
radial directions like waves. There is only one guard band
shared by every two regions, which means that on
average only half guard band is wasted for each region.
Compared with traditional shingled recording, our Wave-
like approach reduces the spatial overhead of traditional
shingled disks by half, resulting in significant improve-
ment of the utilization rate. We will discuss in detail the
disk utilization ratio of wave-like shingled recording to
traditional shingled recording in Section 3.

2.3 Replacement Policy

Upon a miss, cache or buffer must select a block to be
replaced. HWSR uses different replacement policies for SSD
cache and MEM buffer. Note that MEM buffer is mainly
used to buffer writes and SSD cache is only used to cache
reads because of its limited write cycles. In addition, evicted
blocks out of MEM buffer must be written to the disk to
maintain consistence while the replaced blocks out of SSD
cache are not written to disk because the evicted data isn’t
changed.

As the price per byte of SSD continues to decrease, SSD
with a relative small capacity (several hundred Mbytes)
does not incur a significant cost. However, such a small SSD
can effectively capture most hot data and have a high hit
rate, as proved by our experimental results presented later.
For simplicity, we use LRU replacement policy to manage
the SSD cache.

Fig. 3. Comparison of write amplification in traditional layout and our
proposed segment-based layout.

Fig. 4. Track layout.
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There are two LRU queues in MEM buffer: one for blocks
and the other for segments. The LRU block queue takes
advantage of temporal locality but it replaces only one
block at a time. This increases the number of defrag opera-
tions and write amplification because HWSR has to rewrit-
ing a segment for every defrag operation. The LRU segment
queue replaces a segment each time and reduces write
amplification. But it wastes significant cache space. For
example, some blocks are hot in a segment while the other
blocks are cold . Then this segment is in the front of LRU
queue and its cold blocks will never be replaced.

We introduce a new LRU algorithm based on the least
write amplification for MEM buffer, called LWA (least write
amplification). As shown in Fig. 5, LWA divides the LRU
list into two regions to reduce write amplification as well as
keep the most hot data in LRU. The working region consists
of recently used blocks and most of cache hits are generated
in this region. The replacement region consists of blocks
which are candidates for eviction. LWA selects a segment
having the largest number of blocks in it as a victim block
for replacement. LWA not only can keep the hot data in
working region, but also can obtain maximum free blocks
and reduce write amplification.

3 DISCUSSION

In this section, we discuss some key issues existing in our
HWSR and S-block architecture. Those key issues have signif-
icant impacts on the performance of shingled recording disks.

3.1 Write Amplification

The SSD and MEMwork as a two-level hierarchical cache to
the shingled disk. Upon a cache miss, it leads to prefetching
data from the disk or defraging data to disk. Compared
with the S-block architecture [14] that collects garbage when
on a cache miss, our HWSR system only rewrites at most
one segment. The average number of valid S-blocks that
have to be immigrated to the head in garbage collection is v
as shown in Table 1. Note that the S-block in S-block

architecture is the same size as segment in HWSR, so we
replace S-block with segment for convenience of discussion.
For our HWSR, we also need to rewrite some blocks in
defrag operation when the request is a miss. However, the
amount of rewritten data of HWSR is limited to the size of a
segment when defrag occurs. As a result, the ratio of the
average data immigration of S-block to HWSR is v.

Assume the number of segments in a region is n, and the
spare segments in each region is b*n. The spare segments are
used to reduce v in S-block architecture. Generally, b 6¼ 0. If
b ¼ 0, the entire segments of circular log are immigrated to
the head to free one invalid S-block when there is only one
invalid segment in the head of circular log. Write amplifica-
tion is limited to the total number of segments in circular log.
Because each incoming update write is added to the head of
circular log and the head segment are frequently updated,
whichmeans that in most cases invalid segments are concen-
trated to the head of circular log and almost all segments
have to be immigrated to the head in order to free the invalid

head segment. Approximately, v can be considered as 1
b
,

because we write b*n to a region and it will cause approxi-
mately n Sblocks immigrated when the whole segment is
filled with n S-blocks. Note that there are always b*n invalid
segments (spare segments) in each region. Moving all seg-
ments in circular log can release at least b*n invalid
segments. We neglect the cases that there are some invalid
segments in the tail or near the tail of circular log. This is
reasonable because after a long term of writing, there are
less invalid segments in the tail of circular log in the
whole process.

Fig. 6 compares the average number of segments immi-
gration of S-block with different spare capacity rate and the
average number of segments rewritten of HWSR. As b

increases, the average number of segments immigration of
S-block decreases.

3.2 Disk Utilization

In S-block architecture, there are internal guard bands in
circular log-based data layout. Internal guard band is used
to prevent the written data blocks from affecting existing
blocks in each region. There are b*n spare segments that
aim to mitigate the data immigration in S-block architecture.
The region utilization rate of HWSR is 1 because HWSR
doesn’t need any spare segments in each region. The region

Fig. 5. LWA algorithm based on least data immigration.

TABLE 1
Key Parameters of Workloads

Parameters

V The average segment immigration
during GC in S-block

k The number of tracks that are overlapped
by a shingled write

b The spare capacity rate per region
n Each region consists of n segments

(or S-blocks)
H-S ratio The disk utilization ratio of HWSR to

S-block
Sreg Region size (in tracks)

Fig. 6. The average number of segments immigration of S-block
architecture during garbage collection.
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utilization rate of S-block architecture is
Sreg�b�Sreg

Sreg
. The

region utilization ratio of HWSR to S-lock architecture is
1

1�b
. We take both the guard band and internal guard band

into consideration.
The track utilization rate of S-block architecture which

uses traditional shingled recording is
Sreg

Sregþ2k. The track

utilization of HWSR is
Sreg

Sregþk=2. The track utilization ratio

of HWSR to S-block architecture is
2�ðSregþ2�kÞ
2�Sregþk

. So the

disk utilization ratio of HWSR system to S-block is
2�ðSregþ2�kÞ

ð2�SregþkÞð1�bÞ.

Fig. 7a compares the disk utilization ratio of HWSR to
S-blockwhen k is three and the region size varies. We observe
that the disk utilization of HWSR is almost 2 � of S-block
architecture when Sreg is 10 and b is 0.3. In other words, the

disk utilization rate of HWSR doubles the traditional circular
log-based shingled recording disk. From the g Fig. 7b studies
the disk utilization ratio when b is fixed to 0.1. The H-S ratio
has a maximum value of 1.88 when Sreg is 10 and k is 6. From

this figure,we see thatHWSR can improve the disk utilization
effectivelywhen the region size is small. As k decreases or Sreg

increases, the H-S ratio decreases gradually. When the value
of k is small and the Sreg is large enough, HWSR can only

increase the disk utilization a little. However, HWSR does not
add additional overhead. When an access request requires to
read or write one track, HWSR only need to redirect the
request to another track by a simple calculation.

3.3 Metadata

HWSR directly uses address translation and it doesn’t
require a mapping table to map a logical address to its
physical location on the disk. The data layout based on
circular log requires a translation table to map LBAs to
PBAs because their mapping information are not fixed. A
large translation table creates significant overhead in a
circular log-based shingled disk. According to Ref. [15],
1TB shingled writing disk requires over 24 GB space to
store the metadata, which causes significant memory
overhead. Data lookup in such a large table is often very
slow. In addition, garbage collection is necessary to
reclaim invalid blocks to accommodate later requests,
which has a negative impact on the overall performance
of the circular log-based shingled disk.

3.4 Design Issues

Higher average seek time is a key problem in our segment-
based data layout management. Sequential data blocks are
distributed on three adjacent tracks in a segment as shown
in Fig. 3. If the required data is located on multiple blocks,
the traditional sequential data layout shingled recording
has less seek time than the data layout based on segmenta-
tion. In our design, we make a tradeoff between write
amplification and average seek time. There are three rea-
sons. (1) Based on the observation in our experiments, the
writes latency contributes to a large proportion of total
latency, and the segment-based data layout optimizes the
write performance due to greatly reduced write amplifica-
tion. (2) HWSR uses SSD to cache reads, which effectively
reduces the number of random disk reads, resulting in bet-
ter read performance. (3) Compared with circular log-based
data layout, which have to move a great number of valid S-
blocks from the tail to the head during garbage collection,
resulting in increased write amplification, HWSR exhibits
stable performance even under the workload with a lot of
random accesses as shown in the following section.

4 IMPLEMENTATION

In this section, we describe the details of the prototype of
HWSR.

4.1 Prototype Implementation

We have implemented our HWSR in the Linux kernel
2.6.35.6 as a stand-alone kernel module without any modifi-
cations in the Linux kernel. HWSR works as a pseudo block
device at the block layer, as shown in Fig. 8. The upper-level
components, such as file systems or applications, view
HWSR simply as a single block device, despite the compli-
cated internals. Without any system changes, HWSR is easy
to be integrated into existing systems.

HWSR has two major components, namely cache man-
agement and address translation. Cache management
includes SSD cache and MEM buffer management. The
cache resources (including SSD cache and MEM buffer) are
allocated in chunks which are of the same size as a block in
HWSR. In other words, a block is the smallest unit for read
and write requests that are sent to hard disk. This brings
two benefits. First, when moving data into the SSD, orga-
nized writes are more efficient if they are in a reasonably

Fig. 7. Disk utilization of HWSR to S-block (H-S ratio).
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large request. Second, it avoids splitting a request into
several excessively small requests. The mapping table is
implemented as a block-level hash table as described in
Section 4.2. When the size of the cache is kept constant, the
larger the block size is, the fewer number of the block can
be contained in the cache. Thus the block size has a signifi-
cant impact on cache hit rate. Region size is another key
parameter affecting system performance. We will discuss
these issues later in detail in Section 5.5. When the required
data is not contained in the cache, the physical address of
the accessed data is calculated by using Equation (5).

We use a two platters 1TBWestern Digital SATA drive as
a test drive to emulate the shingled disk. In order to simplify
the implementation, we assume that the hard disk has a fixed
number of sectors per track, and the capacity of each track on
the disk is 8� 1;024 sectors (512 bytes in one sector).

For comparison, we have also evaluated S-Block Archi-
tecture that is also implemented in the Linux kernel 2.6.35.6
as a stand-alone kernel module. We choose the S-Block with
the most blocks in the cache buffer for group destage which
is the best amortization of S-Block write over invalidated
blocks. Except the data layout of shingled disk, the parame-
ters of buffer or cache of S-block architecture are the same
as HWSR.

4.2 Address Mapping Structure

To reduce the amount of metadata and ensure consistence,
we construct the address mapping structure between SSD
cache, MEM buffer, and disk. The logical address space of
MEM buffer and SSD cache is divided into independent
blocks which have the same size as the blocks of shingled
disk. There is one hash table that maps the logical address
of requests to the cache or buffer space. If a request has a
cache miss, it accesses the disk directly using the following
address translation formula:

Nreg ¼ LBA=Sreg (1)

Nseg ¼ ðLBAmodSregÞ=Sseg (2)

Nblk ¼ ðLBAmodSsegÞ=Sblk (3)

Noffset ¼ LBAmodSblk (4)

PBA ¼ Nreg � Sreg þNblk � ST þNseg � Sblk þNoffset; (5)

where LBA and PBA are the logical and physical address
respectively(in sectors); Nreg, Nseg, Nblk and Noffset are the
logical section number, segment number, block number and
sector number respectively; ST is the track size (For the con-
venience of representation, we assume all tracks have the
same size); Sreg, Ssec and Sblk are region size, section size
and block size respectively (in sectors).

We construct a segment hash table (SHT) in memory that
stores segment information in each hash node. Each seg-
ment node uses two types of arrays to store block locations.
SBmap array is used to store the block locations in the SSD
cache and MBmap array is used to store the block locations
in the MEM buffer as shown in Fig. 9.

SHT is used to speed up the lookup in SBmap and
MBmap. If an element in one array is valid, then the
requested data content is stored at the location of corre-
sponding devices. If invalid, then the requested data is not
in SSD or Mem, and then the disk will be accessed. Fig. 9
gives an example of data lookup operations for two read
requests (LBA1 and LBA3) and one write request (LBA2) in
HWSR. We assume that the number of blocks per segment
is four and the segment hash value is Ns%4, where Ns is the
segment number. For read request LBA1 (S5, B3, R), the con-
tent inside the parentheses shows that the read request
accesses block 3 in segment 5. In the case of reading LBA1,
MBmap[3] and SBmap[3] are both NULL, then the request
accesses shingled recording disk and the desired data is pre-
fetched to SSD cache. In the case of writing LBA2, the con-
tent of SBmap[2] is SB3, which means the required block is
stored in block 3 in the SSD cache. In the case of reading
LBA3, the content of MBmap[3] is valid, and the target
block is stored in block 4 in the MEM buffer.

4.3 LWA Implementation

To implement the LWA replacement algorithm in the Linux
kernel, we construct a double circular linked list of blocks
as shown in Fig. 10. An incoming write is added to the head
of the circular list. During a miss, the victim block is chosen
within a predefined lookup window starting from the tail of
the circular list. The victim blocks have to belong to the
same segment which has the largest number of blocks in the
lookup window. For example, MB12, MB13, and MB15 will

Fig. 8. HWSR in I/O stack.

Fig. 9. Address mapping translation.
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be evicted out of the list. MB15 and MB12 belong to the
same segment (segment1) as MB13, and segment1 has the
largest number of blocks in the lookup window. Because
replaced blocks have to belong to the same segment, which
limits the rewrites to one segment, this algorithm not only
maintains the most hot data and discards the cold data, but
also reduces write amplification.

5 PERFORMANCE EVALUATION

5.1 Experimental Setup

The experiments for the evaluation were run in a host with
a 2.13 GHz Intel Core Quad CPU and a 8 GB RAM. Our pro-
totype system consists of a 1 TB Western Digital 7200 SATA
hard drive, a 120 GB Intel 320 series SSD, and a small portion
of main memory. Note that we only use partial SSD space in
our experiments to avoid overestimating the performance.
We use Fedora Core 14 with the Linux kernel 2.6.35.6 and
Ext4 file system with default configuration. In order to mini-
mize the interference, the operating system and home direc-
tory are stored in a separate hard disk drive. Table 2 list the
detailed description of the experimental setups.

Unless otherwise stated, the sample parameters are now
provided as follow. A region consists of 32 contiguous
tracks on the same surface, i.e., a segment has 32 tracks. The
size of a block is set to 128 sectors. The SSD size and MEM
buffer size are 128 and 64 M respectively.

5.2 Workload Characteristics

In order to fairly evaluate the performance of HWSR, we
use real world I/O workloads that have meaningful con-
tents as well as access patterns similar to real applications.
We have selected three standard benchmarks and 12 real
world traces in our performance evaluation experiments.

Postmark is a widely used file system benchmark [26]. It
creates 100 directories and 20,000 files, then performs
100,000 transactions to stress the file system, and finally
deletes the files.

SysBench is a multi-threaded benchmark tool for evaluat-
ing the capability of a system to run a database under

intensive load [24]. SysBench runs against MySQL database
with a table of size 4,000,000, max requests of 100,000, and
16 threads.

TPC-C is a benchmark modeling the operations of real-
time transactions. It simulates execution of a set of distributed
and on-line transactions (OLTP) on a number of warehouses.
These transactions perform the basic database operations
such as inserts, deletes, updates and so on. TPCC-UVA [25] is
used on the Postgres databasewith fivewarehouses, 10 clients
for eachwarehouse, and 2 hours running time.

We also replay the I/O traces of twelve representative
application to evaluate our design. The key characteristics
of the 12 traces are summarized in Table 3. The first two
traces (Financial1 and Financial2) are collected from OLPT
applications which run at two large financial institutions.
The other ten traces are collected from enterprise servers at
Microsoft Research Cambridge. We use blktrace to directly
replay the twelve different I/O traces to the block device
that is created by inserting our kernel module.

5.3 Evaluation Results

5.3.1 Benchmarks

Our first experiment is on SysBench. Fig. 11a shows the aver-
age response time per 10,000 requests of SysBench running
on three different storage systems, including HWSR,
S-block, and standard hard disks. Obviously, HWSR pro-
vides superior performance than hard disk and S-block.
Among the three storage architecture, HWSR performs the
best showing 1.57� faster than hard disk, 2.85� better than
S-block as plot in Fig. 12a.

In order to better understand why HWSR performs bet-
ter than hard disk and S-block, we measured the average
read and write response time, the number of segments
rewritten, and cache hit ratio as shown in Fig. 12. The reason
why HWSR has lower response time than disk is mainly
because the cache absorbs the majority of data requests. In
Fig. 12c, we see that the measured hit ratios are 48 and
43 percent for HWSR-MEM and HWSR-SSD respectively,
i.e., in total, 91 percent of the data accesses are hit in the
cache which improves system performance substantially.
Another reason is that the number of segments rewritten is
fewer in HWSR which benefits from our segment-based
data layout management.

Fig. 10. The implementation of LWA.

TABLE 2
Experimental setups

OS Linux version 2.6.35.6-45.fc14.x86_64

CPU Intel(R) Xeon(R) CPU E5506 @ 2.13 GHz
Memory Hynix DDR3 4 GB 2R*4 PC3-10,600 R
Hard disk WD 1TB SATA/64 MB Cache 3 Gb/s 7,200 rpm
SSD Intel SSDSA2CW120G3 3 Gb/s SATA 120 G

Parameters

Emulated shingled disk 1TB
SSD Cache 128 MB
MEM Buffer 64 MB
Block Size 128 Sectors
Region Size 32 Tracks

TABLE 3
Characteristics of Traces

Traces

Name

Total

Requests

Unique

Data Size

Avg.

Read Len

Avg.

Write Len

# of

Updates

Write

Percent

Financial1 1,000,000 0.43 GB 3167B 4525B 749,893 78.73%

Financial2 1,000,000 0.24 GB 2166B 3020B 157,481 18.19%

mds0 1,000,000 3.06 GB 26021B 7423B 856,083 86.88%

mds1 1,000,000 51.78 GB 60233B 14057B 37,958 5.22%

prn0 1,000,000 3.99 GB 25019B 10573B 793,929 85.74%

prn1 1,000,000 6.02 GB 13794B 9840B 174,255 28.97%

proj0 1,000,000 1.93 GB 19717B 13262B 758,902 77.43%

proj1 1,000,000 31.27 GB 36394B 23836B 62,869 17.54%

usr0 1,000,000 2.21 GB 42916B 9801B 600,846 61.40%

usr1 1,000,000 33.14 GB 42705B 7154B 54,190 12.67%

prxy0 1,000,000 0.27 GB 5900B 2441B 937,862 95.26%

wdev0 1,000,000 0.49 GB 12861B 8406B 781,367 79.41%
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Fig. 12a shows that the average response time is 2.58
and 7.35 ms for HWSR and S-block respectively. Although
S-block architecture also has a high cache hit ratio like
HWSR, the average response time of S-block is much higher
than HWSR. From Fig. 12b, we can find some clues as to
why S-block has such a higher average response time. The
average number of segments rewritten per 10,000 requests
in S-block is about eight times as many as HWSR. As more
segments are immigrated in S-block architecture, the num-
ber of disk head movement increases tremendous between
the head and the tail of S-block circular buffer. Thus, the
seek time and rotate time increase greatly, which degrades
the S-block performance severely. As demonstrated in
Fig. 12a, the average write response time of S-block is about
five times more than HWSR, which also reflects the perfor-
mance degradation of S-block resulting from high over-
heads of segment immigrations.

The measured TPC-C average response time is shown in
Fig. 11b for the three different storage architectures. It is
clear that HWSR out-performs S-block with a speedup of

1.9, and shows similar performance to hard disk. The reason
why S-block has much longer response time than others is
also attributed to tremendous amount of segment immigra-
tions. Fig. 12a shows the detailed read and write response
times measured at block I/O level. We see that the average
write response time of S-block is much longer than HWSR.

HWSR has a longer write response time in TPC-C than in
Sysbench. In TPC-C benchmark, clients commit small trans-
actions frequently generating a large amount of write
requests. Correspondingly, more memory defrag operations
are generated. As a result, HWSR spends more time in
rewriting segment resulting in longer write response time.

Postmark benchmark results are shown in Fig. 11c.
Apparently, hard disk performs better than HWSR and S-
block. The average response time per 10,000 requests is
3.84, 6.13, and 6.41 ms for hard disk, HWSR, and S-block,
respectively. Two reasons can explain this. First of all, post-
mark benchmark features intensive small random data
accesses. The cache hit ratio is very low as shown in Fig. 12c

Fig. 11. Average response time per 10,000 Requests. Fig. 12. Average response time, average segment rewritten and Hit ratio.
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because of the completely random characteristic of data
accesses. As a result, the cache hit ratio is relatively low and
many requests must be served by disk. Second, as the cache
hit ratio decreases, the number of segments rewritten
increases substantially which results in severe performance
degradation. Although HWSR performs worse than hard
disk, the overall performance is still quite satisfactory.

5.3.2 Traces

Fig. 13 shows the read, write, and total average response
time for 12 different traces. It is clear from Fig. 13a that for
almost all traces HWSR out-performed S-block with speed-
ups ranging form 1.2 to 32.8, except that HWSR exhibited a
slightly lower performance than S-block for mds. For most

traces, HWSR clearly showed superb performance which is
comparable to hard disk. Even for some traces with high
data locality, HWSR provided much better performance
than hard disk. Take prxy0 for example, the total average
response time for hard disk and HWSR is 2.82 and 0.42 ms,
respectively.

Mds traces are generated from media servers and thus
almost all requests are sequential reads or sequential writes.
For HWSR, reading/writing two blocks on adjacent tracks
takes more seek time than reading two sequential blocks on
one track for S-block. This is why S-block performs a little
better than HWSR for mds.

As demonstrated in Fig. 13b, the average write response
time of HWSR is much lower than S-block for most traces
except mds1. For financial1, the average write response time
for HWSR and S-block is 0.65 and 10.43 ms, respectively.
HWSR is 16� faster than S-block. The reason why S-block
has such a high average write response time is mainly
because of high overheads incurring by garbage collection.
From Fig. 14, we see that the average number of segments
rewritten in S-block is extremely larger than HWSR. For
prn1, the average number of segments rewritten per 10,000
requests reaches up to 11,310. This means that disks are
busy in moving data from the tail to the head during gar-
bage collection of S-block architecture. Due to our segment-
based data layout management, the write amplification of
HWSR is reduced greatly.

HWSR exhibits a slightly lower performance on reads
compared with S-block architecture as shown in Fig. 13c.
Reading two consecutive blocks requires an extra seek time
for HWSR according to our segment-based data layout.
This is the main reason why HWSR has a slightly higher
read response time. Because of the exist of SSD cache and
MEM buffer, many request accesses are served directly
by cache. The read performance gap between HWSR and
S-block is small. In almost all cases, HWSR has similar read
performance to S-block. Even under some workloads,
HWSR provides better performance than S-block. More
importantly, the write latency accounts for most propor-
tions of the total latency. Thus HWSR often achieves a better
performance than S-block due to our write optimization.

From above discussions, we see that with a small size of
MEM buffer and SSD cache, HWSR can obtain stable and
superior performance. In almost all cases, HWSR shows
much better performance than S-blocks. In some cases,
HWSR even performs better than standard hard disks

Fig. 13. Average response time on different traces.

Fig. 14. AVG segment rewritten per 10,000 requests.
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without using SMR. Even in the worst-case scenario, the
performance of HWSR is still quite satisfactory.

5.4 The Impact of Caching on HWSR Performance

In order to better characterize the behavior and perfor-
mance of HWSR, we took a close look at how the SSD cache
and MEM buffer affect HWSR performance.

Fig. 15 shows the I/O performance of HWSR and S-block
without SSD cache and MEM buffer. As shown in Fig. 15,
disk performance is much better than S-block and HWSR
provides a slightly lower performance than S-block. The
average response time of HWSR and S-block is more than
five times higher than standard disk for Financial1. The result
is in accordance with our expectation because SWDs have
the write amplification problem. As shown in Fig. 16, the
average response time of HWSR is higher S-block by 1.5 ms
for Financial1. For HWSR, every write request requires to
rewritten the whole segment, which results in high I/O
latency. For S-block, every S-block circular buffer has an
associate cache circular buffer that is used to store incoming
writes. This is why the performance of S-block is a little better
than HWSR. However, high overhead of garbage collection
also degrades S-block performance substantially.

Fig. 17 shows the I/O performance of HWSR and S-block
with SSD read cache. From Figs. 16 and 18, we observe that
the performance of HWSR and S-block are both improved
and HWSR performs a little better than S-block. It is inter-
esting to observe that the write performance of HWSR is
improved greatly. Compared to HWSR without SSD cache

and MEM buffer, the average write response time of HWSR
with SSD read cache is reduced from 43.53 to 34.46 ms for
Financial2. When rewriting data blocks to one segment,
HWSR needs to read the other data blocks of that segment
from disk. Because of the exist of the SSD read cache, HWSR
can read some data blocks directly from high-performance
SSD instead of disk, which accelerates the rewriting process.
For S-block, SSD read cache improves only read perfor-
mance, but does not bring any benefit to write performance.
This is why HWSR obtains much more performance
improvement than S-blockwhen there exists SSD read cache.

Fig. 19 shows the I/O performance of HWSR and S-block
with SSD cache and MEM buffer. For Financial1, HWSR per-
forms the best showing an order magnitude faster than S-
block, 3.7� better than standard disk. The reason why MEM
buffer brings muchmore performance gains toHWSR than to
S-block is that HWSR is able to take good advantage of strong
spatial locality of the workload. When MEM buffer is full,
HWSR uses LWA replacement policy to select victim blocks
that belong to the same segment. The logical address of these
victim blocks are consecutive in the logical address space. By
using LWA replacement policy, HWSR decreases defrag
operations dramatically and reduces write amplification
efficiently. Therefor, HWSR provides superior performance.

5.5 The Impact of Block Size and Region Size

In this section, we study the impact of block size and region
size on the performance of HWSR. Fig. 20 plots the average
response time of HWSR under different block sizes and
region sizes. In Fig. 20, 16 tracks in the legend means that a
region consists of 16 continuous track on the same surface in
hard disk. We use the number of tracks to denote the region
size. A segment has the same number of tracks as a region.

First, we can clearly observe in Fig. 20 that when the
block size is kept constant, the average response time
increases monotonically as the region size increases. This
result is consistent with our institution. As is known to all,
writing data to one track in shingled write disk destroys the
data previously-stored on the overlapping tracks. Once the

Fig. 15. I/O performance without SSD read cache and MEM write buffer.

Fig. 16. Average response time without SSD read cache and MEM write
buffer.

Fig. 17. I/O performance with SSD read cache.

Fig. 18. Average response time with SSD read cache.

Fig. 19. I/O performance with SSD read cache and MEM write buffer.
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incoming update being served, HWSR writes the data back
to its original position. If writing the data back further
impacts other stored data, the same operation must be per-
formed. Such operation will be continuously executed until
no more data will be affected (i.e., no data stored on the sub-
sequent tracks or reach a region edge). Therefore, as the
number of tracks increases in a segment, the affected tracks
ascend and the write amplification increases resulting
in performance degradation correspondingly. S-block
architecture has the same problem as the region size
increases because the number of valid S-blocks immigra-
tions increases monotonically with increasing region size
during garbage collection. Although the write amplification
increases as the region size increases, HWSR effectively
reduced the write amplification to the size of a segment by
breaking a region into segments. From above discussion,
we see that the number of segments rewritten in S-block is
higher than HWSR by almost two order of magnitude.

Second, Fig. 20 shows that when the region size is kept
constant, as the block size increases, the average response
time decreases gradually at the beginning, and then
increases after reaching the lowest point. In general, a larger
block can capture more requests and accordingly less
requests are separated to different blocks. For HWSR, the
average seek time is reduced because less requested data
are divided into different blocks which are mostly located
on two adjacent tracks. Thus, the performance improves at

the beginning as the block size increases. However, when
the block size continues to increase, the number of blocks
that can be contained in the cache become less as described
in Section 4. Correspondingly, the cache hit ratio decreases
because substantial cold data is buffered in the cache. Thus,
when the block size continues to increase, the performance
degrades. Block size is a key parameter which has a signifi-
cant effect on system performance. In our future work,
block size will be set to a tunable parameter. We can change
the block size to suit for different workloads.

6 RELATED WORK

Recently many researches work on high density recording
technology.

One approach of improving the areal density of magnetic
disks is to change recording medium to avoid the superpar-
amagnetic limit. Examples include Bit-patterned magnetic
recording (BPMR), Heat-assisted magnetic recording, and
microwave assisted magnetic recording. However, those
technologies dramatically change the structure of underly-
ing and mechanical design and disk head sensors of existing
magnetic disks, which might introduce significant costs to
disk manufacture.

Another approach to achieve high density is shingled
recording technology that partially overlaps tracks to nar-
row the track width. Cross and Montemorra [21] demon-
strated that by using a conventional disk head, the areal
density of shingled recording disk can exceed 800 Gb/in2.
And with the stronger write field, the areal density of shin-

gled write disk can be increased to around 2Tb/in2 [4], [8].
Miura [20] pointed out that high density can be attained
when the reader is accurately placed on the center line of
data tracks by analyzing different heads and media and esti-
mating the maximum track density of shingled writing.
Combined with 2-D readback and advanced signal process-
ing (TDMR), SMR can achieve an areal density of 10 Tb/

in2 [7], [11]. Reading from narrower tracks by using a wide
reader causes inter-track interference (ITI). To address this
problem, Ozaki et al. [23] proposed an ITI canceller to repro-
duce waveform from a shingled recording disk. In order to
evaluate the performance of SWDs, Pitchumani et al. [18]
designs a novel SWD emulator that uses a hard disk utiliz-
ing traditional Perpendicular Magnetic Recording and
emulates a Shingled Write Disk on top of it.

Shingled disks have attracted a lot of attentions due to its
density improvement by at least 2T/in2 [4] and its cost-
effectiveness since it does not require to rework the storage
media. But its inferiors performance, particularly for ran-
dom writes, limit its application scope to minimal update
workloads, such as archival workloads. Currently most
existing research works tackle this problem by designing
new data layout for shingled disks [12], [13], [14], [15], [16],
[17]. In [12], [13], SWD is divided into log access zones
(LAZs) and random access zones(RAZs), where LAZs store
user data and RAZs store metadata respectively. The LAZs
are organized as circular log structure and logs at each level
store different data and take different clean strategies.
Cassuto et al. [14] constructed an indirect system which con-
tains two data layout methods. The first one is a set-associa-
tive disk cache architecture that divides SWD into data

Fig. 20. The impact of block size and region size.
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zones and cache zones, where data zones are used for perma-
nent data storage while cache zones are used for caching
incoming write/update requests. Data zones are related to
cache zones set-associatively. The second one is S-block archi-
tecture which organizes data as a circular log. Park et al. [15]
proposed H-SWD to reduce the garbage collection of circular
log by using a hot data identification mechanism. In [16], a
SWD is divided into I-regions and E-regions. E-regions serve
incoming writes/updates while I-regions store data moved
fromE-region during background garbage collection.

The closest work to ours is the shingled file system (SFS)
[17], which is a host-managed design for in-place update
SWDs. The disk space is divided into shingled zones
separated by gaps (unused tracks). SFS furthermore differ-
entiates shingled zones into sequential-write shingle zones
and random-write shingle zones. Although SFS reduces
the overhead of random updates, it did not address the
write amplification problem.

It is mentioned that SSD and NVRAM can be embedded
as cache for delaying updates to shingled recording disks
and reduce data rewritten [3], [7], [12]. Gibson and
Ganger [2] proposed a shingled translation layer (STL) in an
embedded controller to mask the random write restriction
and integrated shingled writing into magnetic disks.

7 CONCLUSIONS

This paper presents a hybrid wave-like shingled recording
disk system to address the problem of poor performance for
small random writes on shingled write disks. We design a
novel segment-based data layout management and a new
wave-like shingled recording that can not only double the
disk space utilization of conventional circular log-based
shingled disks, but also effectively limit the write amplifica-
tion to a small segment. Our hybrid system combines shin-
gled disks with fast memory that works as buffer for writes
and SSD that works as cache for reads. We also design a
new LRU algorithm based on least write amplification to
optimize the overall I/O performance. We have prototyped
HWSR in the Linux kernel 2.6.35.6 as a stand-alone kernel
module. Experimental evaluations on our prototype under
a variety of I/O intensive workloads show that HWSR effi-
ciently reduces the write amplification and improves the
performance of small writes significantly. While our new
data layout slightly increases the average seek time as
sequential data blocks are stored on adjacent tracks, such
degradation can be effectively masked by the memory
buffer and the SSD cache. All in all, HWSR performs much
better than S-block and even provides superior performance
to disk in some cases.
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